Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Sci Rep ; 11(1): 6606, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758248

RESUMO

High lead (Pb) concentration in soils is becoming a severe threat to human health. It also deteriorates plants, growth, yield and quality of food. Although the use of plant growth-promoting rhizobacteria (PGPR), biochar and compost can be effective environment-friendly amendments for decreasing Pb stress in crop plants, the impacts of their simultaneous co-application has not been well documented. Thus current study was carried, was conducted to investigate the role of rhizobacteria and compost mixed biochar (CB) under Pb stress on selected soil properties and agronomic parameters in mint (Mentha piperita L.) plants. To this end, six treatments were studied: Alcaligenes faecalis, Bacillus amyloliquefaciens, CB, PGPR1 + CB, PGPR2 + CB and control. Results showed that the application A. faecalis + CB significantly decreased soil pH and EC over control. However, OM, nitrogen, phosphorus and potassium concentration were significantly improved in the soil where A. faecalis + CB was applied over control. The A. faecalis + CB treatment significantly improved mint plant root dry weight (58%), leaves dry weight (32%), chlorophyll (37%), and N (46%), P (39%) and K (63%) leave concentration, while also decreasing the leaves Pb uptake by 13.5% when compared to the unamended control. In conclusion, A. faecalis + CB has a greater potential to improve overall soil quality, fertility and mint plant productivity under high Pb soil concentration compared to the sole application of CB and A. faecalis.


Assuntos
Carvão Vegetal/metabolismo , Compostagem/métodos , Chumbo/toxicidade , Mentha/efeitos dos fármacos , Rizosfera , Poluentes do Solo/toxicidade , Alcaligenes faecalis/enzimologia , Alcaligenes faecalis/metabolismo , Aminoidrolases/metabolismo , Bacillus amyloliquefaciens/enzimologia , Bacillus amyloliquefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Frutas/química , Chumbo/metabolismo , Mentha/microbiologia , Poluentes do Solo/metabolismo , Estresse Fisiológico , Verduras/química
3.
Plants (Basel) ; 9(10)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080896

RESUMO

Cadmium (Cd) is one of the heavy metals that negatively affects the growth of plants. High solubilization in water leads Cd to enter into plants quite easily, thus decreasing seed germination, photosynthesis, and transpiration. It also shows an antagonistic effect with many of the plants' nutrients like Mn, Ca, K, Mg and Fe. Nowadays, inoculation of plants with ACC deaminase (ACCD) rhizobacteria to mitigate Cd's adverse effects has drawn the attention of environmental microbiologists. The rhizobacteria secrete organic compounds that can immobilize Cd in soil. Therefore, this study was accomplished to investigate the effect of ACCD plant growth promoting rhizobacteria (PGPR) on the bitter gourd under Cd stress. There were six treatments consisting of two ACCD PGPR (Stenotrophomonas maltophilia and Agrobacterium fabrum) strains and inorganic fertilizers at two levels of Cd, i.e., 2 (Cd2) and 5 mg kg-1 soil (Cd5). The results showed A. fabrum with the recommended NPK fertilizer (RNPKF) significantly increased the vine length (48 and 55%), fresh weight (24 and 22%), and contents of chlorophyll a (79 and 50%), chlorophyll b (30 and 33%) and total chlorophyll (61 and 36%), over control at the two Cd levels i.e., Cd2 and Cd5, respectively. In conclusion, the recommended NPK fertilizer + A. fabrum combination is a very effective treatment with which to immobilize Cd in soil for the improvement of bitter gourd growth.

4.
Plants (Basel) ; 9(10)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086633

RESUMO

Management of inorganic fertilizer is very important to obtain maximum crop yield and improved nutrient use efficiency in cereal crops. Fixation of phosphatic fertilizers in alkaline soils due to calcareousness is one of the major hurdles. It induces phosphorus nutritional stress that can decrease the yield of maize and wheat. Selection of a suitable application method and proper stage of crop for phosphorus (P) fertilizer has prime importance in better uptake of P and crop production. Among different application methods, soil and foliar application are widely adopted. In wheat and maize, knee height + tasseling and stem elongation + booting are critical stages towards P deficiency. That is why field trials were conducted to evaluate the supplemental effect of foliar P on maize and wheat yields. For that, 144 mM KH2PO4 was applied as foliar at knee height + tasseling and stem elongation + boot stages in maize and wheat, respectively. Soil application of 0, 20, 40 and 60 kg P ha-1 was done through broadcast and band methods. Results showed that foliar spray of 144 mM KH2PO4 at knee height + tasseling and stem elongation + boot stages in wheat and maize significantly enhanced grains yield and phosphorus use efficiency (PUE) where P was applied as banding or broadcast at the time of sowing. A significant decreasing trend in response to increasing soil P levels validated the efficacious role and suitability of foliar P. In conclusion, the use of P as foliar at knee height + tasseling and stem elongation + boot stages is an efficacious way to manage P fertilizer.

5.
Sci Rep ; 10(1): 17111, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033275

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Plants (Basel) ; 9(7)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708749

RESUMO

Global warming promotes soil calcification and salinization processes. As a result, soil phosphorus (P) is becoming deficient in arid and semiarid areas throughout the world. In this pot study, we evaluated the potential of phosphate-solubilizing bacteria (PSB) for enhancing the growth and P uptake in maize under varying levels of lime (4.8%, 10%, 15% and 20%) and additional P supplements (farmyard manure, poultry manure, single super phosphate and rock phosphate) added at the rate of 45 mg P2O5 kg-1. Inoculation and application of P as organic manures (Poultry and farm yard manures) improved maize growth and P uptake compared to the control and soils with P applied from mineral sources. Liming adversely affected crop growth, but the use of PSB and organic manure significantly neutralized this harmful effect. Mineral P sources combined with PSB were as effective as the organic sources alone. Furthermore, while single supper phosphate showed better results than Rock phosphate, the latter performed comparably upon PSB inoculation. Thus, PSB plus P application as organic manures is an eco-friendly option to improve crop growth and P nutrition in a calcareous soil under changing climate.

7.
Sci Rep ; 10(1): 12159, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699323

RESUMO

Consumption of heavy metals, especially lead (Pb) contaminated food is a serious threat to human health. Higher Pb uptake by the plant affects the quality, growth and yield of crops. However, inoculation of plant growth-promoting rhizobacteria (PGPR) along with a mixture of organic amendments and biochar could be an effective way to overcome the problem of Pb toxicity. That's why current pot experiment was conducted to investigate the effect of compost mixed biochar (CB) and ACC deaminase producing PGPR on growth and yield of spinach plants under artificially induced Pb toxicity. Six different treatments i.e., control, Alcaligenes faecalis (PGPR1), Bacillus amyloliquefaciens (PGPR2), compost + biochar (CB), PGPR1 + CB and PGPR2 + CB were applied under 250 mg Pb kg-1 soil. Results showed that inoculation of PGPRs (Alcaligenes faecalis and Bacillus amyloliquefaciens) alone and along with CB significantly enhanced root fresh (47%) and dry weight (31%), potassium concentration (11%) in the spinach plant. Whereas, CB + Bacillus amyloliquefaciens significantly decreased (43%) the concentration of Pb in the spinach root over control. In conclusion, CB + Bacillus amyloliquefaciens has the potential to mitigate the Pb induced toxicity in the spinach. The obtained result can be further used in the planning and execution of rhizobacteria and compost mixed biochar-based soil amendment.


Assuntos
Carvão Vegetal/química , Chumbo/toxicidade , Poluentes do Solo/toxicidade , Spinacia oleracea/efeitos dos fármacos , Alcaligenes faecalis/enzimologia , Alcaligenes faecalis/isolamento & purificação , Alcaligenes faecalis/metabolismo , Bacillus amyloliquefaciens/enzimologia , Bacillus amyloliquefaciens/isolamento & purificação , Bacillus amyloliquefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Carbono-Carbono Liases/metabolismo , Clorofila/metabolismo , Concentração de Íons de Hidrogênio , Chumbo/química , Chumbo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Potássio/análise , Solo/química , Microbiologia do Solo , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Spinacia oleracea/química , Spinacia oleracea/microbiologia , Simbiose
8.
PLoS One ; 15(4): e0230615, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32251430

RESUMO

Availability of good quality irrigation water is a big challenge in arid and semi arid regions of the world. Drought stress results in poor plant growth and low yield; however, the rhizobacteria, capable of producing 1-aminocyclopropane-1-carboxylate (ACC)-deaminase are likely to improve crop growth and productivity under drought stress. Similarly, biochar could also ameliorate the negative impacts of drought stress. Therefore, this pot experiment was conducted to evaluate the role of ACC-deaminase producing plant growth promoting rhizobacteria (PGPR) alone and in combinations with timber-waste biochar in improving maize growth under drought stress. The ACC-deaminase producing rhizobacteria, Pseudomonas aeruginosa, Enterobacter cloacae, Achromobacter xylosoxidans and Leclercia adecarboxylata were studied along with two rates (0.75 and 1.50% of the soil weight) of biochar under three moisture levels i.e., normal moisture, mild drought stress and severe drought stress. The E. cloacae in conjunction with higher rate of biochar produced a significant improvement i.e., up to 60, 73, 43, 69, 76 and 42% respectively, in grain yield plant-1, photosynthetic rate, stomatal conductance, chlorophyll a, total chlorophyll and carotenoids contents of maize as compared to the control under mild drought stress. Similarly, A. xylosoxidans with higher rate of biochar also enhanced grain yield plant-1, photosynthetic rate, stomatal conductance, chlorophyll a, total chlorophyll and carotenoids contents of maize up to 200, 213, 113, 152, 148 and 284%, respectively over control under severe drought stress. In conclusion, combination of ACC-deaminase containing PGPR, A. xylosoxidans and biochar (0.75%) proved an effective technique to improve maize growth and productivity under drought stress.


Assuntos
Bactérias/enzimologia , Carbono-Carbono Liases/biossíntese , Carvão Vegetal/farmacologia , Secas , Rizosfera , Zea mays/efeitos dos fármacos , Zea mays/microbiologia , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Carotenoides/metabolismo , Clorofila/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Prolina/metabolismo , Estresse Fisiológico , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia
9.
J Environ Manage ; 250: 109535, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31525696

RESUMO

Heavy metals are believed to impact soil processes by influencing microbial communities, nutrient cycling or exchanging for essential plant nutrients. Soil pH adjustment highly influences the bio-availability of nutrients and microbial processes. We examined the effect of soil pH manipulation and copper (Cu as CuCl2.2H2O) application on nitrogen (N) cycling and nitrous oxide (N2O) emissions from an acid soil. Increasing amounts of Cu (0, 250, 500 and 1000 mg kg-1) were added to an acidic soil (pH = 5.44) that was further amended with increasing amounts of dolomite [CaMg(CO3)2] to increase soil pH. Dolomite increased soil pH values, which reached a maximum without Cu application (-Cu) at day 42 of the experiment. The soil pH values decreased with increasing dose of Cu, and remained low as compared with both control and dolomite amended soil. Ammonium (NH4+-N) concentrations were higher in Cu contaminated soil as compared with the control and dolomite treated soil. Nitrate (NO3--N) concentrations increased in dolomite treated soil when compared with the +Cu alone treatments and control. Microbial biomass carbon (MBC) and nitrogen (MBN) contents were higher in dolomite treated soil as compared with the +Cu treatments and control. The application of increasing amounts of Cu progressively decreased soil MBC and MBN. Nitrous oxide emissions were higher (p ≤ 0.01) in +Cu soil as compared with the control, and increased with increasing Cu concentration in soil. Application of dolomite highly suppressed soil N2O emissions in both +Cu and -Cu soils. The results indicate that the effects of heavy metal contamination (specifically Cu contamination) can increase N2O emissions, but this can be effectively mitigated through increasing soil pH, also decreasing potential toxic effects on soil microorganisms.


Assuntos
Óxido Nitroso , Solo , Ácidos , Carbono , Fertilizantes , Nitrogênio
10.
Sci Rep ; 9(1): 5999, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979925

RESUMO

Besides other deleterious effects, drought elevates ethylene level too in plants. Increased ethylene concentration reduces root elongation and development that consequently retard plant growth and yield. There are certain PGPR which produce ACC-deaminase. The ACC-deaminase converts ACC (an immediate precursor of ethylene biosynthesis in methionine pathway in higher plants) into ammonia and α-ketobutyrate instead of ethylene. Regularization of ethylene level in plants mitigate the effects of drought. On the other hand, biochar has been reported to be rich in nutrients and exhibiting higher water holding capacity. So, a pot study was conducted with the hypothesis that the combined application of ACC-deaminase producing PGPR and biochar would minimize the drought effects on wheat growth. The ACC-deaminase producing PGPR were applied on wheat seeds in combination with two biochar doses. Three moisture levels were maintained throughout the trial. The data obtained revealed that B. amyloliquefaciens + 2BC improved the chlorophyll a, chlorophyll b, photosynthetic rate, transpiration rate, 100-grain weight, and grain N, P and K up to 114%, 123%, 118%, 73%, 59%, 58%, 18% and 23%, respectively, under drought conditions. It is concluded that co-application of PGPR and biochar is an effective technique to mitigate the drought effects.


Assuntos
Fenômenos Fisiológicos Bacterianos , Carbono-Carbono Liases/biossíntese , Carvão Vegetal/farmacologia , Secas , Pigmentação/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Bactérias/metabolismo , Carvão Vegetal/química , Fotossíntese/efeitos dos fármacos , Triticum/efeitos dos fármacos , Triticum/microbiologia , Triticum/fisiologia
11.
J Environ Manage ; 223: 607-613, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29975887

RESUMO

Due to increasing demand of P fertilizers and gradual decrease in P resources, recyclable P is the focus of researchers in recent years. Sewage sludge (SS) is a municipal waste that contains appreciable amounts of P and probably other nutrients. In present study, the effects of various SS and their biochars (450 °C for 2 h) were investigated on soil properties and P uptake in wheat (Triticum aestivum) with and without P fertilizer. The biomass of plants and grain yield were significantly increased with application of SS and their biochars as compared to the control treatment either without or with P application. Moreover, there was significant interaction between treatments and P application for the concentration of K, and P in shoots and roots of wheat. Shoot P concentration was not significantly affected with SS than biochars whereas root P concentration was higher in SS treatments than respective biochars. Higher increase in Olsen's P concentration was observed in populated area sludge applied-soil as compared to disposal sludge and their biochars. Overall, it is observed that SS application increased the wheat yield and P concentrations in plants than control depending upon SS types whereas biochar application decreased the P concentration in roots. Grain yield and P concentration in shoots were not significantly affected for the treatment with P fertilizers than without P. Sewage sludge and their biochars might be a potential source of P but further research is needed to recommend the use of modified SS-biochars as source of available P for crops.


Assuntos
Carvão Vegetal , Esgotos , Poluentes do Solo , Fertilizantes , Solo , Triticum
12.
Environ Pollut ; 235: 625-631, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29331895

RESUMO

Several studies have been carried out to examine nitrous oxide (N2O) emissions from agricultural soils in the past. However, the emissions of N2O particularly during amelioration of acidic soils have been rarely studied. We carried out the present study using a rice-rapeseed rotation soil (pH 5.44) that was amended with dolomite (0, 1 and 2 g kg-1 soil) under 60% water filled pore space (WFPS) and flooding. N2O emissions and several soil properties (pH, NH4+N, NO3--N, and nosZ gene transcripts) were measured throughout the study. The increase in soil pH with dolomite application triggered soil N transformation and transcripts of nosZ gene controlling N2O emissions under both water regimes (60% WFPS and flooding). The 60% WFPS produced higher soil N2O emissions than that of flooding, and dolomite largely reduced N2O emissions at higher pH under both water regimes through enhanced transcription of nosZ gene. The results suggest that ameliorating soil acidity with dolomite can substantially mitigate N2O emissions through promoting nosZ gene transcription.


Assuntos
Agricultura/métodos , Poluentes Atmosféricos/análise , Carbonato de Cálcio/química , Magnésio/química , Dióxido de Nitrogênio/análise , Transcrição Gênica/fisiologia , Concentração de Íons de Hidrogênio , Óxido Nitroso/análise , Solo/química
13.
Environ Sci Pollut Res Int ; 24(27): 22111-22118, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28791597

RESUMO

Fresh surface water supplies are gradually becoming insufficient in arid and semi-arid regions of the world. Thus, farmers in these areas are being forced to use poor quality sewage water. Irrigating vegetable crops with sewage water having high metal concentration may affect growth and biochemical processes of plants. Biochar (BC) can sorb these metals and may reduce their toxic effects on plants. Thus, a greenhouse experiment was conducted to study the influence of cotton stalks derived biochar (CSDB) at control (0%) and 1%; ground water (GW; 0.01 ppm Cd); cadmium-contaminated water (CCW; 2 ppm Cd); and sewage water (SW; 0.13 ppm Cd) on growth and biochemical processes of tomato (Solanum lycopersicum) plants. On an average, additions of 1% BC significantly (p ≤ 0.05) enhanced dry weight of roots (36%) and shoots (52%) of plants as compared to without BC application. Biochar (1%) decreased shoot Cd concentration by 33% at SW and 100% at CCW. The Cd uptake was increased by 33% with the BC + CCW treatment. Soil organic matter (SOM) was increased 1.2 times while pH and EC were increased by 5 and 47%, respectively, in 1% BC amended soil. Biochar application alleviated toxic effects of Cd and improved growth as well as productions of photosynthetic and accessory pigments in tomato plants.


Assuntos
Cádmio/análise , Carvão Vegetal/metabolismo , Fotossíntese/efeitos dos fármacos , Pigmentação/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Poluentes Químicos da Água/análise , Irrigação Agrícola
14.
Braz J Microbiol ; 46(1): 97-102, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26221093

RESUMO

Salinity is the leading abiotic stress hampering maize ( Zea mays L.) growth throughout the world, especially in Pakistan. During salinity stress, the endogenous ethylene level in plants increases, which retards proper root growth and consequent shoot growth of the plants. However, certain bacteria contain the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which converts 1-aminocyclopropane-1-carboxylic acid (an immediate precursor of ethylene biosynthesis in higher plants) into ammonia and α-ketobutyrate instead of ethylene. In the present study, two Pseudomonas bacterial strains containing ACC-deaminase were tested separately and in combinations with mineral fertilizers to determine their potential to minimize/undo the effects of salinity on maize plants grown under saline-sodic field conditions. The data recorded at 30, 50 and 70 days after sowing revealed that both the Pseudomonas bacterial strains improved root and shoot length, root and shoot fresh weight, and root and shoot dry weight up to 34, 43, 35, 71, 55 and 68%, respectively, when applied without chemical fertilizers: these parameter were enhanced up to 108, 95, 100, 131, 100 and 198%, respectively, when the strains were applied along with chemical fertilizers. It can be concluded that ACC-deaminase Pseudomonas bacterial strains applied alone and in conjunction with mineral fertilizers improved the root and shoot growth of maize seedlings grown in saline-sodic soil.


Assuntos
Desenvolvimento Vegetal , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Pseudomonas/crescimento & desenvolvimento , Microbiologia do Solo , Solo/química , Zea mays/fisiologia , Aminoácidos Cíclicos/metabolismo , Amônia/metabolismo , Butiratos , Carbono-Carbono Liases/metabolismo , Fertilizantes , Paquistão , Pseudomonas/enzimologia , Salinidade
15.
Braz. j. microbiol ; 46(1): 97-102, 05/2015. tab
Artigo em Inglês | LILACS | ID: lil-748258

RESUMO

Salinity is the leading abiotic stress hampering maize (Zea mays L.) growth throughout the world, especially in Pakistan. During salinity stress, the endogenous ethylene level in plants increases, which retards proper root growth and consequent shoot growth of the plants. However, certain bacteria contain the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which converts 1-aminocyclopropane-1-carboxylic acid (an immediate precursor of ethylene biosynthesis in higher plants) into ammonia and α-ketobutyrate instead of ethylene. In the present study, two Pseudomonas bacterial strains containing ACC-deaminase were tested separately and in combinations with mineral fertilizers to determine their potential to minimize/undo the effects of salinity on maize plants grown under saline-sodic field conditions. The data recorded at 30, 50 and 70 days after sowing revealed that both the Pseudomonas bacterial strains improved root and shoot length, root and shoot fresh weight, and root and shoot dry weight up to 34, 43, 35, 71, 55 and 68%, respectively, when applied without chemical fertilizers: these parameter were enhanced up to 108, 95, 100, 131, 100 and 198%, respectively, when the strains were applied along with chemical fertilizers. It can be concluded that ACC-deaminase Pseudomonas bacterial strains applied alone and in conjunction with mineral fertilizers improved the root and shoot growth of maize seedlings grown in saline-sodic soil.


Assuntos
Desenvolvimento Vegetal , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Pseudomonas/crescimento & desenvolvimento , Microbiologia do Solo , Solo/química , Zea mays/fisiologia , Aminoácidos Cíclicos/metabolismo , Amônia/metabolismo , Butiratos , Carbono-Carbono Liases/metabolismo , Fertilizantes , Paquistão , Pseudomonas/enzimologia , Salinidade
16.
Artigo em Inglês | MEDLINE | ID: mdl-25029405

RESUMO

Heavy metal contamination in the food chain is of serious concern due to the potential risks involved. The results of this study revealed the presence of maximum concentration of heavy metals in the canal followed by sewerage and tube well water. Similarly, the vegetables and respective soils irrigated with canal water were found to have higher heavy metal contamination followed by sewerage- and tube-well-watered samples. However, the heavy metal content of vegetables under study was below the limits as set by FAO/WHO, except for lead in canal-water-irrigated spinach (0.59 mg kg(-1)), radish pods (0.44 mg kg(-1)) and bitter gourd (0.33 mg kg(-1)). Estimated daily intakes of heavy metals by the consumption of selected vegetables were found to be well below the maximum limits. However, a complete estimation of daily intake requires the inclusion of other dietary and non-dietary exposure sources of heavy metals.


Assuntos
Irrigação Agrícola , Contaminação de Alimentos/análise , Metais Pesados/análise , Solo/química , Verduras/química , Águas Residuárias , Paquistão , Esgotos , Poluentes do Solo/análise , Água/química , Poluentes Químicos da Água/análise , Poços de Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...